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We construct a quantum machine which, by using an asymmetric cloner, disentangles
an entangled state and nearly retains it. The attainable maximum value of the
scaling parameter for disentangling is identical to that obtained in previous works.
The fidelity of the output residual entangled state with respect to the input entangled
state is state-dependent. The result shows that it is possible to deal with disentanglement
and broadcasting entanglement in a single unitary evolution.
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Quantum entanglement plays an important role in the quantum information
field. Manipulation of entanglement such as purification (Bennettet al., 1996;
Deutschet al., 1996) and broadcasting (Bandyopadhyay and Kar, 1999; Buzek
et al., 1997) is an intriguing issue in the research on entanglement. Recently disen-
tanglement has attracted a lot of attention (Bandyopadhyayet al., 1999; Fenget al.,
2001a,b; Ghoshet al., 2000, 2001; Mor, 1999; Terno, 1999; Zhou and Guo, 2000).
Disentanglement is a process in which an initial entangled state of a composite
system can be transformed into a separable state without affecting the reduced
density matrices of the subsystems. However like other “no-go” theorems (e.g.,
the no-cloning theorem (Wootters and Zurek, 1982), no-deleting theorem (Pati and
Braunstein, 2000), no-broadcasting theorem (Barnumet al., 1996), perfect disen-
tanglement is prohibited by elementary rules of quantum mechanics (Mor, 1999;
Terno, 1999). But dropping the constraint that the reduced density matrices of sub-
systems are perfectly unaffected, approximate disentanglement can be realized by
local operations (Ghoshet al., 2000; Zhou and Guo, 2000), e.g., by local cloning
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(Bandyopadhyayet al., 1999) and by teleportation via separable channels (Ghosh
et al., 2001). In other words, for a two-qubit entangled state, the transformation

ρent→ ρdisent (1)

can be achieved together with

Tr j (ρ
disent) = si Tr j (ρ

ent)+
(

1− si

2

)
I , i 6= j ; i , j = 1, 2 (2)

for all ρent, wheresi (0 < si < 1 for i = 1, 2) is a scaling parameter indendent of
ρent, standing as a measure of closeness between thei th-reduced-density matrix
before and after the transformation. The attainable values ofs1 ands2 satisfy the
inequalitys1s2 ≤ 1

3. More explicitly, if only one party undergoes local operation,
i.e., s1 = 1 (or s2 = 1), the maximum value ofs2 (or s1) is 1

3; if both two parties
undergo the same local operation separately, the maximum value ofs2 (or s1)
is 1√

3
. The schemes of realization for both cases are concretely proposed in

(Bandyopadhyayet al., 1999; Ghoshet al., 2000).
In this short note, we substitute an asymmetric (isotropic) cloner for the

symmetric (isotropic) cloner in the schemes of disentanglement by local cloning
(Bandyopadhyayet al., 1999). Then a quantum machine is constructed, which can
implement the disentanglement of an entangled state and almost retain it.

Our quantum machine is based on an asymmetric 1→ 2 cloning. The asym-
metric cloning in general is described by a pauli channel (Cerf, 1988, 2000). But,
for convenience, here the action of the asymmetric cloner is specified by a par-
ticular unitary transformation on the state|ϕ〉 = α|0〉 + β|1〉 of the input qubit
a, whereα andβ are unknown real parameters,α2+ β2 = 1 and 0≤ α · β ≤ 1.
From orthogonality, unitarity and isotropy, this transformation can be presented as

|0〉a|ξ〉b|Q〉c → 1√
N
|00〉ab|↑〉c +

(
p√
N
|01〉ab+ q√

N
|10〉ab

)
|↓〉c (3)

|1〉a|ξ〉b|Q〉c → 1√
N
|11〉ab|↓〉c +

(
p√
N
|10〉ab+ q√

N
|01〉ab

)
|↑〉c, (4)

where N is a normalization factor given byN = 1+ p2+ q2, q = 1− p,
p > q, |Q〉c describes the initial state of the cloner,|ξ〉b is an arbitrary initial
state of qubit b, and|↑〉c and|↓〉c are two orthonormal vectors in the Hilbert space
of the cloner. The asymmetric cloning transformation outputs two copies of the
state|ϕ〉 on the qubitsa andb,

ρa = 2p

N
|ϕ〉〈ϕ| +

(
1− 2p

N

)
I

2
, (5)

ρb = 2q

N
|ϕ〉〈ϕ| +

(
1− 2q

N

)
I

2
, (6)
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where I is unitary matrix. So for the qubitsa and b, the reduction factors by
which the cloner shrinks the vector characterizing the input state in the Bloch
sphere areηa = 2p

N and ηb = 2q
N , respectively. Now thatp 6= q, the asymme-

tric cloner outputs two copies with different fidelities for all input states.
And

η2
a + η2

b + ηaηb − ηa − ηb = 0, (7)

which satisfies the no-cloning inequality deduced from Eq. (6) in Cerf (2000).
Therefore the distribution of information at the outputs of the cloner is controlled
via changing the value ofp (Buzeket al., 1998).

In the following we consider how the quantum machine achieves the goal
of disentangling an entangled state and retaining it approximately. The goal is
achieved by applying the above asymmetric 1→ 2 cloning to copy both qubits
separately.

Suppose qubitsaI andaII share an entangled state

|χ〉 = α|00〉aI aII + β|11〉aI aII , (8)

whereα andβ are defined as before. Both two qubits in the state|χ〉 are cloned
according to the transformation defined by Eqs. (3) and (4) separately. Then the
original state|χ〉 is splitted into two branches: two copiesρout

aI aII
andρout

bI bII
of the

entangled state|χ〉 are produced. What we want to do is to obtain a disentangling
state of the state|χ〉 and maintain it nearly. We check the inseparability of two
copies ρout

aI aII
and ρout

bI bII
. The output density matricesρout

aI aII
and ρout

bI bII
are

given by

ρout
aI aII
=
(

(1+ p2)2

N2
α2+ q4

N2
β2

)
|00〉〈00| +

(
(1+ p2)2

N2
β2+ q4

N2
α2

)
|11〉〈11|

+ (1+ p2)q2

N2
|01〉〈01| + (1+ p2)q2

N2
|10〉〈10|

+ 4
p2

N2
αβ|00〉〈11| + 4

p2

N2
αβ|11〉〈00| (9)

ρout
bI bII
=
(

(1+ q2)2

N2
α2+ p4

N2
β2

)
|00〉〈00| +

(
(1+ q2)2

N2
α2+ p4

N2
β2

)
|11〉〈11|

+ (1+ q2)p2

N2
|01〉〈01| + (1+ q2)p2

N2
|10〉〈10|

+ 4
q2

N2
αβ|00〉〈11| + 4

q2

N2
αβ|11〉〈00|. (10)
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It follows from Peres–Horodecki theorem (Horodecki, 1996; Peres, 1996) that if
1−√3+

√
2
√

3
2 ≤ p ≤ 1, ρout

aI aII
is inseparable for

1

2
−
√

1

4
−
(

(1+ p2)(1− p)2

4p2

)2

≤ α2 ≤ 1

2
+
√

1

4
−
(

(1+ p2)(1− p)2

4p2

)2

,

(11)

howeverρout
bI bII

is separable for any values ofα2. So by choosing appropriate value of
p of the asymmetric cloner, a residual stateρout

aI aII
close to the stateρaI aII = |χ〉〈χ |

and a disentangling stateρout
bI bII

can be obtained in a single evolution.
For the residual stateρout

aI aII
, the fidelity with respect to the original entangled

state|χ〉 is examined. The fidelity is defined as

F = 〈χ |ρout
aI aII
|χ〉 = (1+ p2)2

N2
− 8pq2

N2
|α|2|β|2. (12)

Obviously, the fidelityF is dependent on the input entangled state|χ〉. For the
disentangling stateρout

bI bII
, the factorss of qubitsbI andbII are inspected.

ρout
bI
= TrbII

(
ρout

bI bII

)
= 2q

N
(α2|0〉〈0| + β2|1〉〈1|)+ p2

N
(|0〉〈0| + |1〉〈1|)

= 2q

N
TraII (|χ〉〈χ |)+

p2

N
I , (13)

ρout
bII
= 2q

N
TraI (|χ〉〈χ |)+

p2

N
I . (14)

It follows thatsbI = sbII = 2(1−p)
N (p = 1− q). In the range of1−

√
3+
√

2
√

3
2 ≤

p ≤ 1, sbI = sbII ≤ 1√
3
. So the maximum value of closeness which can be achieved

by this process is1√
3

as in (Bandyopadhyayet al., 1999; Ghoshet al., 2000; Zhou

and Guo, 2000). Of course, the maximum value1
3 of s can be achieved in the

quantum machine by copying only one qubit.
According to the viewpoint in Cerf (1998, 2000), it is observed that the

qubits aI (aII ) and bI (bII ) emerge from depolarizing channels of probability
P = 3(1−p)2

2N andP′ = 3 p2

2N , respectively. Hence the variation of the parameterp
changes the capacities of two quantum channels such that the quantum correla-
tion of the initial entangled state|χ〉 is filtered in the branchbI bII but partially
kept in the branchaI aII . Therefore by copying both two qubits asymmetrically
it is possible to disentangle an entangled state and keep some entanglement in
the residual state. The fidelity of the output residual entangled state with respect
to the input entangled state is state-dependent. While the scaling parameters,
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which can be achieved by the proposed quantum machine, has the same range
as in the work (Bandyopadhyayet al., 1999; Ghoshet al., 2000; Zhou and Guo,
2000).

On the other hand, but importantly, if we further analyze disentanglement and
copying entanglement by analogy, the connection between copying (cloning and
broadcasting) and disentanglement is noted (Mor, 1999). It is found that the condi-
tions of perfect disentanglement into product states corresponds to cloning of one
of the subsystems while the conditions of perfect disentanglement into separable
states corresponds to broadcasting of one of the subsystems (Mor and Terno, 1999).
And comparing the schemes of disentanglement and broadcasting entanglement
by local symmetric cloning (Bandyopadhyayet al., 1999; Bandyopadhyay and
Kar, 1999), one can notice that for disentanglement the reduction factorη describ-
ing the quality of symmetric cloner satisfiesη ≤ 1√

3
, whereas for broadcasting

it needsη ≥ 1√
3
(η = 2

3) for the optimal quantum cloner (Brusset al., 1998). In
the meantime, disentanglement erases the quantum correlation (inseparability)
between subsystems as broadcasting needs to retain the quantum correlation
between subsystems, except that in both process the output-reduced-density
matrix of each subsystem is as close as possible to the corresponding input-
reduced-density matrix. There is an intuitive understanding that the disentan-
gling state of an entangled state can be viewed as a separable copy of it. This
suggests that it is possible to look for a unified way of dealing with broad-
casting and disentangling an entangled state simultaneously. When associating
with the actions of the above quantum machine which disentangles an entangled
state and retains it nearly, it may be conjectured that copying both two qubit
in an entangled state by an asymmetric 1→ N(N > 2) cloning be such a sin-
gle evolution that deals with broadcasting and disentangling an entangled state
simultaneously.

To conclude, in the above mentioned, we have proposed a quantum machine,
which for an input entangled state produces a disentangled state and almost retains
the entangled state. The machine is based on an asymmetric 1→ 2 cloning. The
flow of information in the cloning process is controlled by varying the parameter
p so that the quantum entanglement is partially retained in one copy of the entan-
gled state but erased in another. If using the 1→ 2 asymmetric telecloning in the
quantum machine, we can distantly send a copying state of the entangled state to a
receiver and a disentangling state of it to another according to the requirement of
information distribution. Otherwise, if exploiting an asymmetric 1→ N(N > 2)
cloning to copy both qubits in an entangled state, a disentangling state and some
copying states of the entangled state can be possible obtained simultaneously.
The result shows that the disentanglement and broadcasting can be possibly com-
bined in a single unitary evolution. We hope that it is helpful for understanding
entanglement and useful for further studying quantum information and quantum
computation.
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